Random Forest for Regression of a Censored Variable

Yohann Le Faou

July 4, 2017

Insurance, Mathematics and Economics 2017

- 1. Introduction
- 2. Weighted Random Forest and IPCW method
- 3. Experiments

Introduction

Imagine if you were an insurance broker

Commissioning

 ϕ : Commissioning function of the insurance broker (per unit of annual premium)

- T : Termination time of the contract (may be censored)
- C : Censoring time
- $X \in \mathbb{R}^d$: Covariates about the prospect : 6 covariates

Observations

We observe $(Y_i, \delta_i, X_i)_{1 \le i \le n}$ i.i.d. with :

- Y = min(T, C)
- $\delta = \mathbbm{1}_{T \leq C}$
- Goal : Build a model for $f(x) = E[\phi(T)|X = x]$

Weighted Random Forest and IPCW method

Random Forest

- We want to estimate $f(x) = E[\phi(T)|X = x]$
- We know :

$$f = \underset{g}{\operatorname{argmin}} E\left[(\phi(T) - g(X))^2\right] \tag{1}$$

 \implies Need an estimate of $E\left[(\phi(T) - g(X))^2\right]$ with T censored

 \implies More generally, for any bounded ψ , we can estimate $E[\psi(T, X)]$ with T censored using IPCW principle

IPCW principle

• IPCW : Inverse Probability of Censoring Weighting

IPCW principle]

Let $p(t, x) = P(\delta = 1 | T = t, X = x)$

Then for any bounded function ψ ,

$$E[W \cdot \psi(Y, X)] = E[\psi(T, X)]$$
 with $W = \frac{\delta}{p(Y, X)}$

Reminder

• Y = min(T, C)

•
$$\delta = \mathbb{1}_{T \le C} = \mathbb{1}_{Y=T}$$

Proof

$$E\left[\frac{\delta}{p(Y,X)} \cdot \psi(Y,X)\right] = E\left[\frac{\delta}{p(T,X)} \cdot \psi(T,X)\right]$$
$$= E\left[\frac{\psi(T,X)}{p(T,X)} \cdot \underbrace{E[\delta \mid T,X]}_{p(T,X)}\right]$$
$$= E\left[\psi(T,X)\right]$$

Hypothesis

 $\begin{aligned} \mathbf{H1} &: P(T \leq C | X, T) = S_C(T) \text{ (true if } C \perp (T, X)) \\ \mathbf{H2} &: P(T \leq C | X, T) = S_C(T | X) \text{ (true if } C \perp T \text{ conditionally on } X) \end{aligned}$

- Under H1 : $p(t,x) = P(t \le C | T = t, X = x) = S_C(t)$
- Under **H2** :

 $p(t,x) = P(t \leq C | T = t, X = x) = S_C(t | X = x)$

• Let
$$\hat{W}_i = \frac{\delta_i}{\hat{S}_C(Y_i)}$$
 or $\frac{\delta_i}{\hat{S}_C(Y_i|X_i)}$

• We estimate $E[(\phi(T) - g(X))^2]$ by

$$\frac{1}{n}\sum_{i=1}^{n}\hat{W}_{i}\cdot\left(\phi(Y_{i})-g(X_{i})\right)^{2}$$

• Weights are taken into account in the bootstrap of the Random Forest

Experiments

Survival curves by subgroup of individuals

Setting of the Experiments

Results

- We can adapt the Random Forest algorithm to the case where the target *Y* is censored using IPCW principle.
- Weighted Random Forest is competitive with other standard methods

Outlook

- Implementation of the method in a R package
- Theoretical study of the consistency of the method

Acknowledgments

Thanks to Olivier Lopez (UPMC, Paris, France), Guillaume Gerber (Forsides, Paris, France) and Michael Trupin (Groupe Santiane, Paris, France)

Thank you for listening

mail : yohannlefa@gmail.com